
 Technical Sciences and Applied Mathematics 

 12 

 
 

PILOT-IN-THE-LOOP PROBLEM AND ITS SOLUTION 
  
 

 Róbert SZABOLCSI 
 

“Miklós Zrínyi” National Defense University, Bolyai János Military Technical Faculty,  
Budapest, Hungary 

 
 
Abstract: Main purpose of the author is to summarize theoretical backgrounds dealing with mathematical 
modeling of the human pilot behavior, and to give some approximated models applying Padé 
approximation method. Importance of this paper is in derivation and application of higher order Padé 
approximants to model human pilot behavior. This new approach allows to model pilot behavior more 
precisely than before with applying its first order approximants. The lower and higher model 
approximants will be analyzed both in time and in frequency domain. The paper deals with derivation of 
the critical parameters of the human pilot destabilizing the closed loop automatic flight control systems. 
A new MATLAB® embedded code is generated to analyze the pilot mathematical models, and for both 
open and closed loop automatic flight control system’s analysis. 
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1. INTRODUCTION & LITERATURE 
OVERVIEW 

 
Early pioneers of mathematical modeling 

of the pilots’ behavior were McRuer and 
Krendel. This NATO-report deals with 
mathematical modeling of human pilots, with 
analysis of the pilot’s behavior in SISO1 and 
MIMO2 automatic flight control systems. In 
[1] mathematical model of the human pilots 
depends also on the signals feature to be 
followed by the pilot. Authors introduced term 
of the so-called paper pilot, which means 
creation of mathematical model of the pilot as 
the control element of the automatic flight 
control systems and widely applied in flight 
control systems’ analysis and preliminary 
design [1]. Mathematical handbook of G. A. 
Korn and T. M. Korn is cited as main source 
for mathematical backgrounds of the problems 
of approximating time delay [2]. In [3] D. 
McLean deals with conventional and modern 
mathematical modeling of the human pilot 
                                                 
1 Single Input – Single Output 
2 Multi Input – Multi Output 

behavior making difference between aircraft 
and helicopter pilots. In this textbook time 
delay of human pilot is approximated using 
first order Padé approximation, which is in 
many case may be unsatisfactory and time 
delay may be approximated by higher order of 
Padé-approximants. In [4] R. C. Dorf and R. 
H. Bishop derived mathematical model of the 
human operator, which has more extended 
applicability. In that means human operator 
models can be applied for any kind of drivers 
(e.g. car, motorcycle, ship, train, ground and 
air robots etc. drivers and operators). 
Obviously, the only common thing these 
models are coinciding is the structure of the 
mathematical models, while its parameters are 
quiet different. 

Author leans on his scientific papers 
[5,6,7,8] published before, which are dealing 
with conventional and modern mathematical 
methods applied to model human pilot 
behavior [5], with derivation critical 
parameters of the human pilot acting in the 
closed loop automatic flight control system [6, 
8], and, with derivation of the complex set of 
critical parameters of the human pilot in the 
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aircraft lateral motion automatic flight control 
systems [7] 

 
2. PADÉ APPROXIMATION OF THE 

TIME DELAY 
 
Let us consider the system given in Figure 

1 [5,6,7,8]. The transfer function  
represents the dynamical system consisting of 
pure time delay of , and transfer function of 

, which is strictly proper and stable. The 
problem of approximation of the time delay 
can be formulated as follows: approximate 
original transfer function of  
by transfer function of , 
where  is a rational 
approximation of time delay of . In other 
words, we want to find  so that the 
closed loop behavior of  matches input-
output behavior of the original system, of 

. 
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Fig. 1 Block Diagram of the Model Matching   
Error Problem Formulation 

 
To measure the mismatch we will apply 

the same input  to both transfer functions 
of , and . By comparing output 
signals of  and  one can derive how 

 approximates , or, how  
approximates time delay of . In control 
theory, this problem formulated as model-
matching problem.  
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ŷ
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The so-called model-matching error 
(MME) can be given using following  
equation: 
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In eq (1) 2 ŷy −  denotes the energy of 
the output error ŷye −=  due to an input 
signal energy of 2 u . The largest possible 
ratio of the output error energy over the input 
energy is defined to be model-matching error. 
It is well-known from control theory that 
model matching error can be found using 
following formula: 
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It is obvious, that if  is small, than 
difference between the Nyquist plots of the 
transfer functions of  and  is small. 
This observation is valid if and only if  
is stable. Therefore, for the given transfer 
function of  we want to find a rational 
approximation of  for time delay derived 

by  so that the approximation error, or in 
other words, the model-matching error 

 is smaller than a pre-defined 
tolerance, say 
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For further discussion for Padé 
approximation we will use the following 
formula [5,6]: 
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where coefficients of eq (5) are defined as 
follows: 
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Coefficients of the Padé-approximant for 
10n ≤  can be found in Appendix 1. 
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3. MATHEMATICAL MODELS OF THE 
HUMAN PILOT BEHAVIOR 

  
The simplest mathematical model of the 

human operator – supposing single reference 
signal tracking activity – can be derived using 
Fig. 2 [3,4,5]: 

τ−== s
p

in

out
p eK

)s(x
)s(x)s(Y                        (7) 

where  is the input signal to be tracked by 
the pilot,  is response signal from the 
pilot,  is pilot gain, and finally,  is time 
delay of the pilot. 

inx

pK
outx

τ

 

 
 

Fig. 2 Mathematical Model of the Pilot Behavior 
 
From eq (7) it is easily can be seen that the 

human operator behaves as proportional (P) 
term with pure time delay (TD) [5,6,7,8]. For 
simplicity let us denote eq (7) for P-TD-
model. More complicated mathematical model 
of the human operator – including ability of 
the pilot to predict events and signals – can be 
derived using Fig. 3: 

τ−+== s
pp
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p e)sT1(K
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where  is the prediction time constant. pT
From eq (8) it is easily can be derived that 

the human operator behaves as a proportional-
differential (PD) term with pure time delay 
(TD) [5,6,7,8]. For simplicity let us denote 
mathematical model of eq (8) as PD-TD-
model. 

 
 

Fig. 3 Mathematical Model of the Pilot Behavior 

For further analysis let us consider 
dynamic model of the muscular acting system 
of the human operator. Block diagram of the 
human operator in this particular case can be 
seen in Fig. 4. 

 

 
 

Fig. 4 Mathematical Model of the Human Pilot 
Behavior 

 
Using Fig. 4 transfer function of the pilot 

can be derived as it given below: 
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where  is time constant of the muscular 
system of the pilot. From eq (9) it easily can 
be derived that mathematical model of the 
human operator is proportional-differential 
(PD) first order (1O) term having pure time 
delay (TD) [5,6,7,8]. For further discussions 
let us denote eq (9) as PD-1O-TD-model. 

1T

Using Fig. 4 following equation can be 
derived: 
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Using eq (10) the following formula can be 
derived: 
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Input signal  of time delay term of )t(x τ  
can be found using following formula: 
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For approximation of time delay of τ  in 
eqs (9)-(12) we will use first order Padé 
approximants.  

One can write that 
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Modern mathematical representation of  
the human operator can be given using its  
state space representation [5,6,7,8]. During 
derivation of this dynamical model let us 
choose the state variables as they are given 
below: 

xxx out1 +=                                  (14) 

xx2 =             (15) 
Using eqs (9)-(15) the state and output 

equations of the human pilot defined on Fig. 3 
can be found as follows [5,6,7,8]: 
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Finally, if to consider neuro-muscular 
sensing, processing and, actuating system of 
the human pilot following block diagram can 
be given [1]: 

 

 
 

Fig. 5 Mathematical Model of the Human Pilot 
Behavior 

 

Using Fig. 5 following transfer function of 
the human pilot can be derived [1,5]: 
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In eq (18) second order term of 
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defines mathematical model of the 
neuromuscular system of the human pilot [1]. 
It is easy to derive that the second order 
proportional-differential term of eq (18) 
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may be rewritten in the following state space 
model: 
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From equation (18) it easily can be derived 
that mathematical model of the human pilot is 
proportional-differential (PD) second order 
(2O) term having time delay (TD) [5,6,7,8]. 

For further discussions let us denote eq 
(18) as PD-2O-TD-model.  

Let us introduce the following state 
variable 

xxx out3 +=                                  (23) 

Time delay τ  in eq (18) can de 
approximated using first order Padé 
approximants, i.e.: 

τ+
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−≅τ−

/2s
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Let us substitute eq (24) into eq (18), and 
convert this mathematical model into the time 
domain.  

After simple mathematical manipulations 
one can get following state and output 
equations [1,8, , 0]: 
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4. TIME DOMAIN ANALYSIS OF THE 

HUMAN PILOT BEHAVIOR 
 
One of the most important kind of the 

human pilot activity is the reference signal 
tracking. Many flight tasks (e.g. semi-
automated landing, refueling, air-to-air 
combat, air-to-ground weapon delivery, terrain 
following, formation flight, aerobatic close 
formation flight etc.) are in close relationship 
with this kind of actuating. 

There can be defined some typical input 
signals to be followed by the pilots, such as 
step signal, ramp signal, and much other kind 
of pure or transformed periodical signals (e.g. 
saw tooth, square signals etc.). In this paper 
author chose for the time domain analysis the 
step input function, the ramp input signal, and 
finally, the square signal [3,4,5]. 

It is well-known form the previous sections 
that there are several possible mathematical 
model of the human pilot to be used during 
computer simulation. In this paper we will 
apply dynamical mathematical model of PD-
1O-TD defined by eq (9), which is represented 
in Fig. 4. For the computer-aided simulation 
let us use the following parameters of the 
mathematical model defined by eq (9): 

 

s5,0  ;s4,0T  ;s1T  ;10K 1pp =τ===     (27) 
 

During computer simulation from the 
possible set of order of approximation there 
were chosen the 1st, the 4th, and, the 7th order 
of approximations. Fig. 6 shows step 
responses of the human pilot having 
approximated mathematical model of the time 
delay. The input signal of the human pilot to 
be followed by him is  [9,10]. )t(1)t(xin =

From Figure 6 it is obvious that increase of 
order of approximation result in larger 
amplitudes of the output signal. However, in 
the time delay zone, increase of the order of 
the approximation results in oscillations with 
higher frequencies. It means that error of 
approximation decreases as its order increases. 

 
 

Fig. 6 Step Responses of the Human Operator 
‘–‘ 1st    ‘– –‘ 4th  ‘….’ 7th Order Approximation 

 
Fig. 7 shows ramp responses of the human 

pilot mathematical model. The input signal of 
the human pilot to be followed by him now is 

t)t(xin = . 
 

 
 

Fig. 7 Ramp Responses of the Human Operator 
‘–‘ 1st    ‘– –‘ 4th  ‘….’ 7th Order Approximation 

 
From Fig. 7 it is easily can be seen and 

derived that increase of the order of 
approximation results in decrease of the error 
of the approximation: in the time delay zone 
magnitude of the output signal  
decreases as order of the approximation is 
increases while output signal is going to be 
more and more oscillatory. Finally, let us 
analyze the human operator behavior when he 
is tracking the periodical signal. For this kind 
of analysis author chosen the square signal 
with frequency of 

)t(xout

3,0f =  Hz, and period time 
of sec 3,0/1T = . Results of the computer 
simulation can be seen in Fig. 8. 

 16 
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Fig. 8 Transient Responses of the Human Operator  
‘–‘ 1st    ‘– –‘ 4th   ‘….’ 7th Order Approximation 

 
From Fig. 8 it is easily can be determined 

that increase of the order of approximation 
results in less amplitudes in output signal. In 
time domain of the delay the output signal 
becomes more oscillatory as order of 
approximations increases. 

 
5. FREQUENCY DOMAIN ANALYSIS  
OF THE HUMAN PILOT BEHAVIOR 
 
Typical input signal of the human pilot is 

the sinusoidal with variable frequencies. 
Figure 9 shows the response of the human 
pilot to the harmonic input signal of the 
sinusoidal with unity gain [9,10]. From Fig. 9 
it is obvious that pilot gain for each order of 
approximation is very close to each other. The 
phase angle radically decreases as order of 
approximation is increases [9,10]. 

 

 
 

Fig. 9 Bode Diagrams of the Human Operator 
‘–‘ 1st    ‘– –‘ 4th  ‘….’ 7th Order Approximation 

6. COMPARISON OF THE HUMAN 
PILOT’S BEHAVIOR IN THE TIME 

DOMAIN 
 
In the practice a question ‘what kind of the 

model of the pilot activity to use for the control 
system analysis and design?’ often may arise. 
From theory of automatic flight control 
systems it is evident that the pilot-in-the-loop 
problem can be characterized with the multi-
loop feature, i.e. many flight parameters of 
such regimes as semi-automated landing of the 
aircraft airspeed, vertical speed, height of the 
flight, distance from runway threshold, glide 
path angle, angular deflection measured from 
runway centre line etc. must be controlled by 
the pilot. 

From this argue follows that increase value 
of the flight parameters to be controlled results 
in decrease of the complexity of the pilot 
model to be applied during analysis and design 
of the automatic flight control systems 
[1,5,8,9,10]. 

Let us analyze behavior of the human pilot 
model for several form of its mathematical 
model supposing second order Padé-
approximation for the given time delay. 
During computer simulation mathematical 
model defined by eqs (7), (8), (9) and (18). 
Results of the computer simulation can be seen 
in Figures 10, 11, and 12. 

Fig. 12 represents step responses of the 
human pilot behavior, when input is step 
response function of . )t(1)t(xin =

 

 
 

Fig. 10 Step Response of the Human Pilot 
‘–‘ P-TD   ‘– –‘ PD-TD   ‘’–.–.‘ PD-1O-TD  ‘…’ 

PD-2O-TD 
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Fig. 10 shows ramp responses of different 
pilot models having input of . t)t(xin =

 

 
 

Fig. 11 Ramp Response of the Human Pilot 
‘–‘ P-TD   ‘– –‘ PD-TD   ‘’–.–.‘ PD-1O-TD ‘…’ 

PD-2O-TD 
 
Fig. 11 shows transient responses of 

different human pilot mathematical models 
induced by square periodical signal with unity 
gain and frequency of 0,3 Hz. 

 

 
 

Fig. 12 Transient Response of the Human Pilot 
‘–‘ P-TD   ‘– –‘ PD-TD   ‘’–.–.‘ PD-1O-TD ‘…’ 

PD-2O-TD 
  

Figures 10, 11, 12 clearly show that if to 
add D-term to the proportional (see eq (7)) it 
will result in more oscillatory system (see eq 
(8)) with large amplitudes (dashed line on the 
figures). Introducing fist order term to eq (8) 
will result in damped system reducing 
oscillatory feature (dash-dot line on the 
figures). Application of the second order term 
of eq (18) in comparison with system defined 

by eq (9) results in more oscillatory behavior 
(dotted line on the figures). 

Using the method given above human pilot 
model behavior can be compared also for 
higher orders of the Padé-approximation. 

 
7. DERIVATION OF THE CRITICAL 

PARAMETERS OF THE PILOT’S 
ACTIVITY 

 
Knowledge of the human pilot behavior is 

very important from the flight safety aspects. 
It is difficult to model a human pilot having 
mathematical model considering all possible 
conditions. Even common mathematical 
models of the human pilot can be applied with 
great success. Purpose of the author is to show 
how to determine critical parameters of the 
human pilot? It is well known that there are 
many parameters of the pilot (e.g. gain, time 
delay, time constants, damping rations, natural 
frequencies etc.) which can be analyzed and 
also their critical value can be found. 

Due to its importance author will deal only 
with determination of the critical time delay of 
the human operator yielding instability of the 
control loops of the automatic flight control 
systems. Results and proposals of this paper 
can be applied for extension of the analysis 
shown is this article. The general method 
recommended by the author is well known 
from control systems theory but the paper 
suggests the new field for its application. 

Pilot is the most important element in the 
aircraft steering system. Even if aircraft has 
modern control system for maneuvering driven 
by digital computer pilot must has the right to 
take control over aircraft and steer it manually. 
Automation of the aircraft flight phases 
induced the need to design semi-automated 
automatic flight control systems, which 
suggest for the pilot what kind of actuation to 
carry out. For this purpose high level 
technology displays are used in the cockpit. 

Semi-automated aircraft steering is very 
useful because pilot takes active part in 
actuation process and do not reduce his ability. 
During flight phases semi-automated steering 
can be applied: semi-automated landing, 
refueling, air-to-air combat, dog fight, air-to-

 18 
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ground weapon delivery, terrain following, 
formation flight, aerobatic flight, close 
formation flight etc. 
 

7.1. Derivation of the Critical Value of 
Human Pilot Time Delay 

 
During semi-automatic, or manual control 

of the aircraft one of the problem to be solved 
by the pilot is reference signal tracking or, 
following commands suggested by the 
automatic flight control system, or other 
systems (e.g. navigation system, radar system, 
weapon system etc.). As it was said before 
commands are listed on the display: e.g. turn 
left, turn right, accelerate, decelerate, descend, 
climb, etc. 

For example, in this paper the single loop 
automatic flight control system is analyzed. In 
this particular case pilot has to control only 
one flight parameter. Let us choose for 
analysis the roll angle control system. In this 
system the task of the pilot to track the 
reference signal of the roll angle  
indicated on the display.  

)t(Rγ

Block diagram of the semi-automated roll 
angle control system can be seen in Fig. 13 
[3,4,5,8,9,10]. 

 

 
 

Fig. 13 Pilot-in-the Aircraft Roll Angle Control 
System 

 
Flight parameters and data are indicated on 

the displays. It is supposed that display has no 
time delay and, any time constants. This 
condition is strongly satisfied for modern 
analogue and digital displays.  

Transfer function of the display can be 
formulated as follows [3,5]: 

 

1)s(YD ≅ .                                             (28) 
 

Let us take into consideration for the 
modeling of pilot behavior mathematical 
model of the human operator. Regarding [5] 
transfer function, and model parameters are as 
follows: 

s21
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In eq (29) later we will consider following 
parameters [5,6,7,8]: 

 

10Kp = , sec 1Tp = .                     (30) 
 

From eq (29) it is evident that model of the 
aircraft applied in this section is proportional-
differential (PD) one with time delay (TD), 
which is approximated with the first order 
Padé-approximation given in. 

Ailerons of the aircraft are deflected using 
hydraulic actuator.  

The simplified mathematical model of the 
actuator can be defined as it given below: 

 

1
s05,01

1
s20

20)s(YA ≅
+

=
+
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Lateral motion dynamics of the aircraft is 
supposed to be the so-called single degree of 
freedom approximation derived by [3,5] and 
its transfer function is as follows: 

 

)9,0s(s
21,0

)s(
)s()s(Y

A
C/A +

=
δ
γ

=          (32) 

where )s(Aδ  is the angular deflection of the 
ailerons, or input of the aircraft, )s(γ  is roll 
angle, or in other words, response of the 
aircraft to its input signal. 

From [1] it is evident that pilot model 
parameters depend upon complexity of the 
task to be solved by the pilot, and also upon 
physical and psychical ability of the pilot. 
Among these parameters time delay is the 
most important because its presence tends 
closed loop automatic flight control system to 
its stable working boundary [3,5,9,10]. Let us 
derive , which leads closed loop automatic 
flight control system to its stable working 
conditions. For this purpose let find the closed 
loop automatic flight control system transfer 
function related to reference input signal of 

critτ

)s(rγ .  
The closed loop transfer function of the 

investigated system can be derived using Fig. 
3, i.e.: 
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         (33) 

Substituting data defined by eqs (28)-(32) 
into eq (33) yields to closed loop transfer 
function formula: 

)21)(s1010(21,0)21)(s9,0s(

)21)(s1010(21,0
)s(W 2 τ−+⋅+τ++

τ−+⋅
=   

                                                                    (34) 
In control theory there are many available 

methods for determination of the closed loop 
control system stability. Some of them are 
graphical, others are algebraic ones. These 
methods allow deriving stability conditions of 
the closed loop system. Other possible 
application of the algebraic stability criteria is 
finding critical parameter of the closed loop 
control system [3,4,5,9,10]. Using stability 
criteria formulated by Hurwitz closed loop 
control system is stable if and only if 

1. all coefficients of the characteristic 
polynomial are positive ones, say ia >0. This is 
the necessary stability condition; 

2. algebraic minors on the main diagonal 
of the Hurwitz-determinant are positive, say 

iΔ >0. If there is a single determinant with 
negative value, the closed loop control system 
is unstable. If 0=Δ i , the system in upon 
stable working boundary and this condition 
can be used for determination of the critical 
parameters of the control system. This is the 
sufficient condition of the closed loop 
stability. 
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Let us find the characteristic polynomial of 
the closed loop control system, which is the 
denominator of the transfer function of eq (6). 
It is supposed that the only variable parameter 
is the pilot time delay  while all other 
parameters are supposed to be constant. One 
can easily write that: 

τ

0)s21)(s1010(21,0

)s21)(s9s()s(K 2

=τ−+⋅

+τ++=
         (35) 

After some simple mathematical 
procedures we get the following third order 
characteristic polynomial, i.e.: 

0asasasa1,2

s)05,13(s)6,01(s
2

)s(K

32
2

1
3

o

23

=+++=+

τ−+τ−+
τ

=
     (36) 

Applying necessary stability conditions 
using coefficients of eq (36) one can determine 
following stability inequalities: 

2a0
τ= >0   →  > 0 s                       (37)               

τ−= 61,01a1  > 0   →  τ < 1,6666 s      (38) 
τ−= 05,13a2  > 0   →  τ < 2,8571 s     (39) 

           

From eqs (37)-(39) it is obvious that for the 
stable working closed loop control system the 
human pilot time delay must lie in the 
following range: 

0 < τ  < 1,6666 s.                              (40) 
For the next step let us find sufficient 

conditions of stability using Hurwitz-
determinant.  

The Hurwitz-determinant can be found 
using coefficients of the characteristic 
polynomial. One can write that: 

 

1,26,010
005,132

01,26,01

3

τ−
τ−τ

τ−
=Δ          (41) 

Using eq (41) the following algebraic 
minors leaning on main diagonal can be found. 
If we suppose that the system on the boundary 
of the stable working, following determinants 
can be derived [7]: 

0i =Δ             (42) 
From eq (41) we can find the following 

stability conditions: 
 

06,011 =τ−=Δ  → s6666,1crit =τ       (43) 
 

0
05,132/
1,26,01

2 =
τ−τ

τ−
=Δ          (44)            

039,363,0 2 =+τ−τ →    (45) 
s 9001,0
s 2904,5

crit2

crit1

=τ
=τ

 

01,2
1,26,010

005,135,0
01,26,01

2

3

=Δ⋅=

τ−
τ−τ

τ−
=Δ

         (46) 
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02 =Δ  →                    (47) 
s 9001,0
s 2904,5

crit2

crit1

=τ
=τ

From eqs (42)-(47) critical parameter of 
the human pilot time delay destabilizing 
closed loop automatic flight control system 
can be easily derived to be: 

sec 9001,0crit =τ            (48) 
Time delay domain defined from necessary 

stability conditions and given by eq (40) is 
limited with time delay defined for the 
sufficient stability conditions given by eq (48). 
Stability conditions for the closed loop 
automatic flight control system given in Figure 
13 can be derived as follows: 

0 <  <0,9001 sec           (49) τ
Let us calculate the step response of the 

closed loop automatic flight control system. In 
this particular case reference signal of the 
system to be followed by the human pilot is 

)t(1)t(r =γ                       (50) 
Let the set of time delays considered 

during computer simulation be as follows: 

sec1
  sec;9,0  sec;3,0

unstab

critstab

=τ
=τ=τ

         (51) 

Results of the computer simulation can be 
seen in Fig. 14. 

 

 
 

Fig. 14 Closed Loop Automatic Flight Control 
System Step Responses 

 
Figure 14 shows that for small value of 

time delay, say , the closed loop 
step response is stable: the roll angle has 
bounded value. Transient response time is 
small. It means that pilot is able to track the 

reference signal with no static error and the 
closed loop control system is stable. 

sec3,0stab =τ

In case of critical time delay of 
sec9,0crit =τ  the closed loop system including 

human pilot has harmonic, periodical response 
with constant amplitudes. In other words, pilot 
unable to track the bounded reference signal. 

Finally, having unstable time delay of 
sec 1unstab =τ , closed loop automatic flight 

control system with the pilot inside has 
unstable response, which is harmonic signal 
with increasing amplitudes. It is evident that in 
this particular case pilot loosing the control 
over the aircraft and may generate the so 
called pilot induced oscillation (PIO) which 
can be dangerous for flight safety. In worst 
case situation PIO can lead to damage of the 
airframe and to fatal accident of the aircraft. 

Dynamic performances of the closed loop 
automatic flight control system were found for 
three different values of the time delay defined 
by eq (51) and put into Appendix 2. 

From the Appendix 2 it is evident that for 
sec3,0stab =τ  closed loop automatic flight 

control system is stable, and has eigen values 
of 06,11 −=λ , and j89,22,23,2 ±−=λ  on the 
left side of the complex plane, which tells 
about stability. 

For critical value of the time delay of 
sec 9,0crit =τ  closed loop has a pair of 

complex roots of , 
which is practically lies on the imaginary axis 
of the complex plane. These roots generate 
harmonic response of the closed loop 
automatic flight control system. 

j14,21032,1 4
3,2 ±⋅−=λ −

In case of sec 1 unstab =τ  closed loop 
automatic flight control system has a pair of 
roots on the right side of the complex plane, 
say, j03,2109,03,2 ±=λ , which generates 
unstable response from the closed loop 
automatic flight control system. 

 
8. CONCLUSIONS 

 
Human operators are still one of the most 

important ‘part’ of the control systems. They 
may monitor the physical processes, or 



 Technical Sciences and Applied Mathematics 

 22 
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Technical Publishing Co., Budapest, 1975; 

actively actuate in the control systems. Since 
operator acts as simple term of the closed loop 
control system it is necessary to model his 
activity, and, to take into consideration. 
Modeling human pilots is important from 
many aspects of aircraft maintenance both in 
the air and on the ground. His mathematical 
model depends upon complexity of the system 
in which he acts, upon the level of his training, 
upon his physical and psychical conditions, 
and finally, depends on signals’ characteristics 
to be followed. 
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The paper dealt with determination of the 
human pilot’s critical parameters. Author 
introduced widely applied mathematical 
models of the human operator. Paper showed a 
new field of application of the classical 
Hurwitz stability criteria. A new example was 
presented how it can be used for purposes of 
derivation of critical parameters of the pilot. 
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Note and underline that for complex 
analysis of critical parameters of the human 
operator (e.g. gain , and prediction time 
constant ) also must be determined. 
Conditions and requirements for stability of 
the closed loop automatic flight control system 
must be satisfied for all possible parameters of 
the human operator for all possible aircraft 
dynamics, i.e. for all possible flight conditions 
and regimes. 
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